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Abstract 

A fully automatic procedure for the generation of 
constraint-conserving coordinates especially suited 
for the lattice dynamics of molecular crystals has been 
developed. Molecules with arbitrary constraints from 
rigid, semirigid to completely flexible may be treated. 
The procedure generates a mapping from new 
dynamical coordinates {~'v} to Cartesian atomic dis- 
placements. The new coordinates are defined by this 
mapping. It is accurate up to second order in ~'p, thus 
allowing for the inclusion of force-constant contribu- 
tions due to curved paths of atoms whose displace- 
ments are subject to some constraints. The procedure 
has been implemented in a lattice dynamics program 
currently under development. Exemplifying calcula- 
tions on an oxalic acid molecule with several sets of 
constraints are presented. 

Introduction 

In the modelling of molecular crystals for refinement 
or dynamical calculations one often wishes not to 
deal with all 3N Cartesian coordinates of the 
individual atoms. It is usually more economical and 
clearer to take account only of a smaller number of 
degrees of freedom that are relevant for the actual 
problem. The most extreme and widely used form of 
such a reduction in the number of degrees of freedom 
is the assumption of a completely rigid molecule 
(Pawley, 1972). There are, however, many molecules 
that cannot be considered as completely rigid. 
Nevertheless, most of them still contain rigid groups 
that allow a considerable reduction of the number of 
relevant coordinates. In general such a semirigid 
molecule may be specified by a number of geometrical 
constraints, e.g. fixed bond lengths, fixed bond or 
torsional angles or confinement of four atoms into 
one plane. Because of the curvilinear nature of coor- 
dinates fulfilling such constraints, a linear relation of 
the Cartesian atomic displacements with the new 
coordinates is not sufficient. Neto gives a metric tensor 
formalism for the calculation of higher-order 
coefficients for analytically specified curvilinear coor- 
dinates (Neto, 1984). 

In the following a numerical algorithm is described 
that allows for a completely automatic choice of an 
appropriate set of coordinates for molecules with any 
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geometrical constraints. There is no need to predefine 
any new coordinates analytically. This algorithm has 
been programmed in Fortran 77 as part of a general 
lattice-dynamics program for molecular crystals cur- 
rently under development in our laboratory. 

Statement of the problem 

Let {x~li= 1 , . . . , 3 ,  v=  1 , . . . ,  N} denote the Car- 
tesian coordinates of atom v of the molecule under 
consideration and { u ~'} the deviations of the {x~} from 
their equilibrium values by any type of molecular 
motion. For a system withoqt constraints this implies 
3N degrees of freedom per molecule. However, for 
a system with a certain number Nc of independent 
constraints (semirigid), the total number of degrees 
of freedom is reduced to M = 3 N - N o .  Therefore 
one has to specify M new coordinates, {~plp= 
1 , . . . ,  M}, for the description of the dynamics of the 
semirigid molecule. This means that one has to look 
for a mapping T: 

{u~'} = T({~p}), 

such that the constraints are not violated but all 
allowed displacements {u~'} may be generated by 
some vector ~ = (~1, ~2,. • •, ~M). IfT is used in lattice 
dynamics, in general it has to be specified up to second 
order in ~: 

M M 
u~= ~, 'T~p+½ E 2T~q~v~Jq+O(~3). 

p=l p,q=l 

The need for the second-order term may easily be 
seen by looking at the expression for force constants, 
Cpq, with respect to the new coordinates {~v} in a 
molecular crystal. Let • be the total lattice energy, 
then 

O,,q = a~c,/a~'p aL, 

- Z (a~,p/au~ 'auy)(au[/a~p)(auj*/a~q) 
vi~j 

+Z (aevlauF)(a2uFla~ a~) 

= y. (o~a, lou~ ou~') 'T~ 'T~ 
viI.Q 

+ Z (aa, lau~) ~T;~. 
vi 
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A very simple example may further clarify the 
above statement: imagine a rigid dipolar dumbbell 
in a homogeneous electric field E turning around its 
centre C as depicted in Fig. 1. Here the new dynamical 
coordinate ~ is proportional to the librational angle 
around the centre C. The linear part of a coordinate 
generating the mapping T is only able to approximate 
the displacement paths of the + and - 'atoms' by 
straight lines parallel to the equipotential lines of the 
assumed electric field. Therefore no restoring torque 
aligning the dipole along the electric-field vector E 
can be derived from this description. Only the second- 
order par t  of T yields parabolic paths that approxi- 
mate the exact circular motion of the charged 'atoms' 
to a high degree of accuracy as long as ¢ does not 
become too large. If a realization of T including the 
second-order terms is used, the right restoring force 
may easily be computed. 

The goal of our procedure will be the automatic 
specification of the coefficients {T~p} and {T~q} for 
arbitrary molecules with arbitrary constraints. 

Computational method 
First-order coefficients 

For a given molecule, {x~'}, the constraints are 
specified in terms of nonzero values for the corre- 
sponding intramolecular valence force constants k. A 
pseudo-distortion energy, Od, is defined as 

/c'stretch ( dvv, o 2  d=½E .-u.' - du ,) 
i)u' 

k.bend 0 2 
+½ E 

1, , i~ ,  1) H 

+1 E .-vv'~t~'kt°rsi°n (~/t~,v,~t~, - i]/vv,tz~ , ) 0  2 
~'l~'p`p '̀ 

kou t  of plane( "v 0 2 
+½ E 

VU' U"p` 

with d~, = distance between atoms v and v', ~,~,,  = 
bond angle of the bond v--  v ' - -  v", @ u.,~.., = torsion 
angle around the bond v'--/z, and Yuu,.-p` = angle of 
bond v--/z with the plane containing v, v' and v". 

Fig. 1. Dipolar dumbbell in a homogeneous electric field to illus- 
trate the need to specify T up to second order in ~. 

d o, ~o, ~o and yo are the corresponding equilibrium 
values. 

For every bond distance d, bond angle ~o, torsion 
angle ~b and out-of-plane displacement y that should 
be considered as rigid, the corresponding coefficient 
k is set to an arbitrary nonzero value, all others being 
set to zero. Once ~d is given, the intramolecular 
pseudo-force-constant matrix [C~ "] can be com- 
puted: 

c,s=ou  /au  ou . 

Because of the required rigidity of the geometrical 
up. 

bond properties contributing to [C 0 ], any allowed 
distortion {*u~'} of the molecule must satisfy the fol- 
lowing equation: 

o= E c p` *u '*uJ 
vip`j 

A set of M linearly independent orthogonal distortion 
patterns {*u~'} may easily be found by diagonalizing 
[C~P`]. The diagonalization yields 3N  eigenvalues, 
{AslS = 1 , . . . ,  3N}, M of which are zero within the 
numerical accuracy. The corresponding eigenvectors, 
{t~plAp=O,p= 1 , . . . ,  M}, represent one specific set 
of M linearly independent distortion patterns that 
fulfil the condition 

Therefore 

E c p` tg=o.  
p̀ J 

E C~jp  ̀t~p t~p=O. 
p`jvi 

The t~ may be identified with the coefficients T~ 
we are looking for. Of course, this choice is not 
unique; any other set of linearly independent vectors 
{% = [z~]p} that s~an the same M-dimensional linear 
subspace U 3 of R that is spanned by the {Tp} may 
be chosen instead. For example, in lattice-dynamical 
prob|ems it is convenient to have a diagonal mass 
tensor,/~ = [/zpp,6pv,], yielding the simple expression 
for the kinetic energy: 

Ekin =½ ~ ~p~ .  
P 

This can be achieved by a simple rotation of the 
original basis {'Iv} to a new basis {'Iv'} within the 
subspace U and taking the T'~ v as linear coefficients 
of the modified mapping T'. Another possibility is to 
align the rotated basis {T~} such that the first three 
cordinates (p = 1 , . . . ,  3) correspond to the centre-off 
mass motions and the next three coordinates corre- 
spond to the rotation of the whole'molecule. 

As a variation of the procedure outlined above one 
may also employ a realistic valence force field and 

vp` enter atomic masses mu, then diagonalize [C o / 
(mump`) l/u] and take all eigenvectors {t~lAp<Alim} 



200 AUTOMATIC CHOICE OF DYNAMICAL COORDINATES 

that correspond to vibration frequencies below a 
limiting frequency Plim as basis for the subspace U. 
However, in that case no second-order coefficients of 
T may be computed by the procedure described in 
the next section. 

Second-order coefficients 
Now that we have a procedure to compute the 

first-order coefficients of T for a molecule in a specific 
orientation and conformation {x['} it is possible to 
devise a method to obtain the second-order coeffi- 
cients, 2T~pq. Whereas ~'n general an analytical type 
of solution seems exceedingly complicated, the fol- 
lowing numerical procedure is quite feasible. Let us 
denote by ~T~p ° the first-order coefficients derived 
using the original molecular coordinate set {x~'}. To 

v compute 2Tipq now generate first a slightly distorted 
coordinate set, {x~+~T~ ° A¢q}, by displacing the sys- 
tem along the new coordinate ~'q employing the 
already known linear part of the mapping• With the 
new atomic positions thus generated ~T~ may be 
calculated again; the result is denoted ~T~(A~q). 
Owing to the arbitrariness of the selection of the basis 
{1Tq(A~'q)lp--1,...,M} of the subspace U q ( A ~ q ) ,  

before comparison of this result with the {T O } vectors 
an adapted set, {~Tq'(A~q)}, has to be constructed by 
projecting the {T °} onto the subspace uq(A~q). The 
corresponding second-order coefficients are then 
obtained from 

• I vqt I 2T~vq=l~mo[ Tip (a~'q)- T~°]/A¢q. 

This procedure has to be repeated for each q with 
1 -< q -< M to get all second-order coefficients. 

Implementation 

The procedure outlined above has been programmed 
in IBM VS-Fortran (Fortran 77) employing double- 
precision arithmetic as part of a larger general lattice- 
dynamics program for molecular crystals. Constraints 
may be specified redundantly or non-redundantly by 
specifying the numbers v, v' (v",/x, . . . )  of the atoms 
concerned together with the corresponding interac- 
tion constants k. The pseudo-distortion energy is 
calculated according to the formula given above (also 
including stretch-stretch, bend-stretch and bend- 
bend interactions). The geometric parameters d, ~, 
~, y are computed from the distance vectors connect- 
ing the atoms v, v' (v", /z, . . .).  The intramolecular 
force-constant matrix C~ " is computed by numerical 
differentiation (incremental atomic displacements are 
A X -  5 × 10-7) •  The diagonalization is performed by 
the IMSL routine EIGRS (International Mathemati- 
cal and Statistical Library, 1979). All eigenvectors 
corresponding to eigenvalues Ap > 2 × 10 -3 [ o r  if real- 
istic vibration frequencies are computed Ap> 

(27r~'lim) 2] a r e  selected to span the subspace U• The 
second-order coefficients are derived as described in 
the previous section using a value ofA¢ = 0"05. Before 
storage they are symmetrized with respect to p and q. 

The transformation properties for transferring the 
T coefficients from one molecule to those of another 
symmetry-related molecule in the unit cell are given 
in the Appendix. 

Example 

As a still comparatively simple but instructive 
example some computational results on the oxalic 
acid molecule (Derissen & Smit, 1974) are presented 
here. As far as realistic valence force constants have 
been employed these were taken from De Villepin, 
Novak & Bougeard (1982); see Fig. 2. Three different 
constraint models are illustrated by the example 
calculations. 

The first model is generated by setting all valence 
force constants less than or equal to 0.15 aJ A-2 equal 
to zero. The remaining force constants are used to 
compute @a and thus give rise to the constraints. The 
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H(I) 
0(1) [075] 

Fig. 2. Example: oxalic acid. The numbers indicate the valence 
force constants for bond stretching, bond-angle bending, torsion 
and out-of-plane motion (numbers in square brackets), respec- 
tively ( De Villepin et al., 1982), units are aJ/~-2 ( = 1 mdyne A,- 1 ). 

2.19 

218 

2.17 

o ~ ~ 2 

Fig. 3. Distance O(1).. .O(2) for an oxalic acid molecule with the 
second model set of constraints as a function of the distortion 
parameter ~: (see text). The solid triangles correspond to a pure 
first-order T, the open triangles correspond to a mapping includ- 
ing second-order coefficients, the broken line indicates the con- 
stant value. 
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largest eigenvalue Ap that has been considered as zero 
within the numerical accuracy was A7=0.13 x 10 -8, 
the lowest Ap considered as nonzero was A8=0.23. 
That is to say, the torsion around the C(1)- -C(I ' )  
bond is free; all other elements are still rigid. This 
yields a total of M = 7  degrees of freedom to be 
compared with the 3 N  = 24 degrees of freedom of 
the completely flexible molecule. Six of the seven 
remaining degrees of freedom stem from the transla- 
tional and rotational motion of the whole molecule. 

The second model allows for additional out-of- 
plane motions of the two hydrogen atoms by setting 
equal to zero all force constants less than or equal to 
0.18 aJ A -2. The two additional degrees of freedom 
increase M to M - - 9 .  

Finally, the third model includes the out-of-plane 
motions of the O(2), 0(2')  atoms and bending of the 
C(1 ) -O(1)-H(  1 ), C ( I ' ) -O( I ' ) -H( I ' )  angles by setting 
all force constants less than or equal to 0.83 aJ A-2 
to zero ( M  = 13). 

In Figs. 3 and 4 some tests of the derived coordi- 
nate-generating mappings T for the three models are 
presented (first: circles, second: triangles, third: 
squares). The atomic displacements {u~'} are com- 
puted for a distortion generated by the M-component 
constrained coordinate vector (0 .1 ,0 .1 , . . . ,0 .1)~ .  
With model 2 the distance O(1).-.O(2) should ideally 
be constant irrespective of any allowed distortion. 
Fig. 3 demonstrates that this is valid only to first order 

- 2  

- 6  

t t , 
zx / / D  

A / "  ,o  t / 

- 1 8  i . . . . . . . .  I , , , ,  , . , , i  _ 

O.Ol 0.1 tg ~ lO 

- 10  

Fig. 4. Energy ~a owing to constraint,violating distortions as a 
function of the distortion parameter ~:. Solid symbols: first-order 
mapping only, open symbols: second-order mapping. Different 
symbol shapes correspond to the three different models 
explained in the text. 

in ¢ for a pure first-order T, whereas the mapping 
including the second-order terms meets this constraint 
much better. In Fig. 4 the logarithm of the distortion 
energy @d owing to constraint-violating distortions 
is plotted vs  log(f). As expected for the pure first- 
order mapping the slope of the straight lines connect- 
ing the computed values for all three models implies 
@a "" ¢4. The slope of the lines through the points 
from the calculation with the second-order mapping 
show a slope indicating @ d -  ¢6. The deviations of 
the computed values at small ~ are due to the increas- 
ing influence of numerical truncation errors during 
the evaluation of @d- These results do not depend on 
the specific choice of the distortion vector but may 
also be obtained with any other distortion of the form 
(a, ,  a 2 , . . . ,  aM)~. 

A P P E N D I X  

Transformation properties of  the T coefficients 

For cases where several identical molecules are in 
one unit cell the first- and second-order coefficients 
of the mapping T may be transferred from one 
molecule A to another molecule B by employing the 
appropriate proper or improper rotation matrix, R: 

x' i  ~ =  ~., Roxf f  A + Si, 
J 

where s denotes a shift of the whole molecule. Then 

' T ~ = ~ Rij ' T~p a 
J 

2 TvB  vA 
_ ,pq = Z R o  2 T;~q . 

J 

For any orthogonal/~ the diagonal mass tensor/2 is 
B not influenced, i.e. p A = P~p . 
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